____ **C.U.SHAH UNIVERSITY** Winter Examination-2022

Subject Name: Graph Theory

Subject Code: 5SC04GRT1		Branch: M.Sc. (Mathematics)	
Semester: 4	Date: 20/09/2022	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

Q-1 Answer the Following questions:

(07)

- **a)** What is the maximum number of edges in a bipartite graph having 10 vertices? (02)
- **b**) What additional arc could be added to the graph to ensure the resulting graph (02)would contain an Euler circuit?

c)	Define: Arborescence	•			(02)	
d)	True/False: The num total number of edges		tries in incidend	ce matrix represents the	(01)	
Q-2	Attempt all question	IS			(14)	
a)	State and prove necessary and sufficient condition for the graph is disconnected.					
b)	Define the following: 1) Bipartite graph	2) Eccentricity	3) Cut-set	4) Adjacency matrix	(04)	
c)	Define: Circuit matrix	K			(02)	

Q-2 Attempt all questions

- a) Let G be a tree with n vertices then prove that G has n-1 edges. (07)
- **b**) Answer the following questions from the following graph

Figure – 1

i) Write one Spanning tree.

- ii) Write one fundamental circuit w.r.t. i).
- iii) Write adjacency matrix.
- iv) Write one closed walk of length 13.
- c) Verify first theorem of graph theory for Figure-1. (02)

Q-3 Attempt all questions

- a) Let G be a connected digraph with n vertices then the rank of A(G) is n-1. (05)
- **b**) From the following adjacency matrix draw the diagraph *G*. Also find X^4 and hence (05) find the directed edge sequence of length four from v_1 to v_3 .

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

c) Define the following with examples:
1) Symmetric digraph 2) condensation

OR

- Q-3 Attempt all questions (14)
 a) Write Teleprinter's problem and hence construct such sequence for r = 4 with (05) suitable digraph.
 b) D f = O the problem of the dimensional data (14) (14) (15)
 - b) Define Out-tree. Let G be an out-tree then prove that G is a tree in which every (05) vertex other than root has exactly one in-degree.
 - c) If G be a digraph then prove that determinant of every square sub-matrix of A(G) is (04) 1,-1 or 0.

(14)

(05)

(14)

(04)

SECTION – II

Q-4	Answer the Following questions:	(07)
a)	Define: Symmetric difference of matching	(02)
b)	What does the mean of chromatic number? Find it for $K_{7,3}$.	(02)
c)	Define: Cut-set matrix.	(02)
d)	Find chromatic number of G if $E \neq \phi$ in any graph G.	(01)

Q-5 Attempt all questions

(14)

(14)

(07)

- Prove that the vertices of every planner graph can be properly colored with 5 colors. (07) a) (07)
- Show that the following graphs are isomorphic. b)

OR

Q-5 Attempt all questions

Find chromatic polynomial of following graph. a)

Figure –3

b) Let *G* be a simple graph with *n* vertices and $d(v) \ge \frac{n}{2}$, for $\forall v \in G$ then *G* is a (07)

Hamiltonian graph, where $n \ge 3$.

Q-6 Attempt all questions

- **a**) State and prove Hall's theorem.
- **b**) Draw a graph C_5 whose vertex set $V = \{v_1, v_2, v_3, v_4, v_5\}$ and edge set E = (04) $\{a, b, c, d, e\}$. Hence find at least two minimum vertex cover and minimum edge cover with definition of each.

OR

Q-6 Attempt all Questions

(14)

(10)

(14)

(10)

- a) State and prove Min-Max theorem.
- b) Answer the following questions from the following graph (04)

Figure – 4

- i) Find a perfect matching and a maximum matching.
- ii) Find one M-augmenting path and M-alternating path.

